wostandart
  • Blog

Схема Драйвера Для Питания Светодиодных Ламп

11/18/2016

0 Comments

 

Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает / Хабрахабр. Недавно один знакомый попросил меня помочь с проблемой.

Внимание, электрические схемы драйверов светодиодных ламп гальванически Лампа предназначена для питания от сети напряжением 220-240 В. Собираем источник питания из готовых схем. Обзор недорогих модулей питания для светодиодной из Китая. Можно запитать не только диодную ленту, но и светодиоды.

Схема Драйвера Для Питания Светодиодных Ламп

Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности. LED лампа выглядит вот так: Рис 1. Внешний вид разобранной LED лампы.

Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 5. Цельсия. Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности. Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям : ). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1.

Если нужно организовать диммирование без внешнего питания, то можно взять напряжение питания драйвера ~15В (нога 2 микросхемы или резистор R7) и подать по следующей схеме. 1 Вт светодиодные лампы. Светодиодная лампа представляет собой несколько светодиодов (или светодиодную матрицу) со схемой питания, заключённой в цоколе. Правильное питание светодиодов - целая наука, благо драйверов сетевого питания придумано предостаточно. Блок питания светодиодных ламп Схема импульсного блока питания Однако двухкаскадная схема драйвера довольно дорога. Драйвер для питания светодиодов обеспечивает стабильный ток на выходе. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным&nbsp. Схема импульсного блока питания. Однако двухкаскадная схема драйвера довольно дорога,&nbsp. Драйвер для питания светодиодов обеспечивает стабильный ток на выходе. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным.

Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

Схема Драйвера Для Питания Светодиодных Ламп

Вернемся к проблемам драйвера. Вот так выглядит плата драйвера: Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа. И с обратной стороны: Рис 3.

Внешний вид платы LED драйвера со стороны силовых деталей. Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7.

Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками. В МТ7. 93. 0 встроены защиты. Наиболее близкая приведена на рисунке: Рис 4. Схема электрическая принципиальная. Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

То есть, называя источник тока драйвером светодиодов, люди намекают. У балластных схем питания СИД ламп, помимо простоты и&nbsp.

Схема светодиодного драйвера. 1 Вт светодиодные лампы.

Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН3. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 2.

Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 1. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений. Рис 5. Фото разделительного трансформатора. Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 6. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения. Итак, конденсатор по питанию медленно заряжается (это время порядка 3.

Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы. Почему же срабатывает защита и по какому именно параметру? Первое предположение.

Срабатывание защиты по превышению выходного напряжения? Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 1. R6 3. 9 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой- то момент схема заработала! Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные.

Никаких отклонений от нормы? После 2. 0 минут в выключенном состоянии не работает. Очень хорошо, видимо дело в нагреве какого- то элемента? Но какого? И какие же параметры элемента могут уплывать? В этой точке я сделал вывод, что на плате преобразователя имеется какой- то элемент, чувствительный к температуре.

Нагрев этого элемента полностью нормализует работу схемы. Что же это за элемент? Второе предположение. Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из- за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из- за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа.

Это резистор R4 R8 R1. CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2. На исследуемой плате стоит параллельно два резистора R1. R1. 6 с эквивалентным сопротивлением 2,3 ома. Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.

Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут. Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве? Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется : ). Плюс интуитивное ощущение – не оно.

Я доверяю своей инженерной интуиции. К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы. Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию. К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло. Третье предположение.

Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа. По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 1. 5 погреть – и все нормально заводится. Прогрев микросхемы паяльником ничего не давал. И очень смущало малое время нагрева.

Раз лампа загорается — значит цепи запуска исправны. Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны. Остывает и перестает работать — что- то зависит от температуры? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?

Пролазил тестером холодную плату — нет обрывов. Что же еще может мешать переходу от режима запуска в рабочий режим?!!!

От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 1. И тут наступило счастье. Заработало! Замена конденсатора 1. Вот он, виновник проблемы: Рис 6. Конденсатор с неправильной емкостью.

Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 2. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока. Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе.

И ее не хватало чуть- чуть — буквально пары- тройки процентов. Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново. Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.

Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск. Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов. Положительную роль сыграл допуск на емкость электролитических конденсаторов (- 2. Со временем емкость уменьшается из- за высыхания электролита.

Повышенная температура на месте выходного контроля — достаточно буквально пары- тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 2. Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 2.

Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

0 Comments



Leave a Reply.

    Author

    Write something about yourself. No need to be fancy, just an overview.

    Archives

    November 2016

    Categories

    All

    RSS Feed

Powered by
  • Blog
✕